Abstract
Microbubbles play a crucial role in various industries due to their advantages, such as small diameter, stable phase interface, and large specific surface area. Consequently, microbubble generators have entered a period of development. Among various microbubble generators, the Venturi tube stands out for its simple structure and high foaming efficiency. However, it still faces drawbacks, such as significant variations in particle size. Therefore, a new microbubble generator that utilizes the Venturi tube is currently being investigated. The tail of Venturi tube is connected with Tesla valve. According to the number and position of Tesla valves, various structures are formed: single-segment, multi-segment, and multi-segment same-side or different-side Tesla valves. Various structural characteristics are compared using Fluent software, and the optimal structural dimensions are determined using the Response Surface Methodology (RSM). The results show that the symmetrical distribution on both sides of Tesla valve is the best, and the proportion of microbubbles can be increased to 90%. The optimal dimensions are found to be an inclination angle (α3) of 34°, an inclination length (L8) of 29 mm, and a displacement length (L9) of 0. The optimized new structure is tested, and the reliability of the simulation results is verified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemical Engineering and Processing - Process Intensification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.