Abstract

The essence of cutting carbon fibre-reinforced plastic (CFRP) composites is a process of material failure and chip formation. The mechanism of cutting CFRPs can be explained from the perspective of local removal of material on the microscopic level. The morphology of the chips resulting from the cutting process can be determined from the perspective of the overall failure of the material on the macroscopic level. To reveal the mechanism of cutting CFRPs at both levels, a macroscopic model and a microscopic model are established in this study. Orthogonal cutting is applied in both of the models to illuminate the removal process. Combined with experimental observations, the results that obtained from both the macroscopic and microscopic level revealed the different mechanics of cutting CFRPs for different fibre orientations. For example, the forms of fracture that occur at 0° fibre orientation are primary interface cracking and fibre bending; the resulting chips have long shapes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call