Abstract

The shock tube is a crucial experimental apparatus in the field of explosive impact. Limited research has been conducted on the visualization of the internal flow field in shock tubes under blockage conditions, and there is a lack of comprehensive understanding of the mechanisms behind blockage effects. This paper presents experimental and numerical investigations into the propagation of shock waves inside a shock tube and their interaction with obstructive elements. Blockage effect experiments were conducted on a shock tube test platform, where pressure data were obtained through a pressure monitoring system. Additionally, schlieren imaging technology was employed to visualize the evolution of shock wave fronts. A two-dimensional numerical model of the shock tube was established using Fluent software, and the computed results exhibited excellent agreement with the experimental data, confirming the accuracy of the numerical model. The mechanism of the blockage effect was revealed through analysis of pressure-time curves and images depicting the evolution of shock wave fronts. Furthermore, adjustments to parameters on the validated numerical model allowed for analysis and comparison of different blockage ratios. The results indicate that the disturbance to the flow field caused by the blockage effect is primarily due to the reflection of shock waves between the front surface of the obstructive element and the shock tube wall. This reflection leads to differences in pressure curves compared to free-field conditions, and such differences increase with higher blockage ratios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call