Abstract

Staphylococcus aureus is a common food pathogen and has a strong tolerance to environmental stress. Here, the biofilm formation of S. aureus strains after cold stress for 24 weeks were investigated. It was found that the biofilm formation of S. aureus CICC 21600, CICC 22942, W1, W3, and C1 cells was enhanced after cold stress for 20 weeks. What is more, the mRNA levels of the clfA, icaA, icaB, icaC or icaD genes in these strains were increased for >2-fold. The increased gene transcription levels were consistent with the increase in the polysaccharide content in the biofilm matrix of these S. aureus strains after cold stress. Meanwhile, hydrophobicity and the adhesion proteins also played a role in the formation of biofilms. The biofilm of S. aureus cells can be effectively degraded by snailase and proteinase K (125 µg/mL + 20 µg/mL) mixture. In summary, S. aureus frozen at −20 °C for 12 to 20 weeks is still a potential hazard. Food factory equipment should be cleaned in a timely manner to avoid outbreaks of foodborne pathogenic bacteria due to contamination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.