Abstract

In modern engineering, electromagnetic induction quenching is usually adopted in improving the fatigue performance of steel engine parts such as crankshafts. In order to provide the theoretical basis for the design of the process, correct evaluation of the strengthening effect of this technique is necessary. In this paper, the research aim is the strengthening effect of this technique on a given type of steel crankshaft. First the magnetic-thermal coupling process was simulated by a 3D finite element model to obtain information on the temperature field during the heating and cooling stages. Then the residual stress field after cooling was simulated based on the same model. At last, the fatigue property of this crankshaft was predicted based on the combination of three parameters: the KBM (Kandil–Brown–Miller) multi-axial fatigue model, the residual stress field and the fatigue strength of the material. The experimental results showed that this method can achieve a much more reasonable prediction than the traditional strengthening factor, and thus can be applied in guiding the design of the quenching process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.