Abstract

The self-suspension of magnet in magnetic fluid has been widely used in micromechanical systems, sensors, and dampers. The magnetic field associated with the ring magnet is obtained by numerical calculation and simulation through which the axial magnetic levitation force is calculated, and the numerical calculation, simulation, and experimental results agree with each other. The influence of the radial eccentricity of the ring magnet on the axial magnetic levitation force is studied, the ring magnet will experience a maximum axial magnetic levitation force without radial eccentricity. With the increase of radial eccentricity and the decrease of the distance between the bottom of the ring magnet and container, the axial magnetic levitation force will continue to decrease. But it is worth noting that the magnitude of the change caused by radial eccentricity is negligible compared to that of the axial magnetic levitation force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.