Abstract

The analytical thermal model of the grinding process is an important tool for predicting temperature to minimize workpiece thermal damage while improving process efficiency. As more and more numerical models are developed for the grinding temperature research, the established analytical model can be validated with numerical method. A new analytical thermal model of arc moving heat source for rectangular workpiece is deduced, and the temperature distribution results of this analytical model are compared with a validated numerical model. A principle based on the influences of parameters on the analytical and numerical results is proposed for comparing the analytical and numerical model. The comparison result shows that the temperature distribution results agree well on the contact surface, and there are few errors on the finished surface; the significant errors only appear at the boundary between different areas. The established analytical model is validated by the comparison result and can be used for further research about the heat transfer in surface grinding by cup wheel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call