Abstract
Photon-counting light detection and ranging (LiDAR) emits and receives weak photon signals, which are easily mixed with background noise caused by the sun, the atmosphere, etc., and is thus difficult to distinguish. Therefore, point-cloud denoising is a key step in point-cloud data processing of photon-counting LiDAR. To explore the adaptability of different denoising algorithms for photon-counting LiDAR data in different times and spaces, in this paper, NASA’s official differential, regressive and Gaussian adaptive nearest neighbor (DRAGANN) algorithm; Herzfeld’s radial basis function (RBF) denoising algorithm; and the density-based spatial clustering of applications with noise (DBSCAN) algorithm based on density clustering are used to denoise the ICESat-2 ATL03 photon point-cloud data. Airborne LiDAR data are used to verify the denoising accuracy, and then the adaptability of the three algorithms is discussed. The results show that the DRAGANN algorithm is suitable for data with moderate Fraction Vegetation Coverage (FVC) (45–75%) at night and is less affected by slope; therefore, it is not limited to terrain slope. The denoising accuracy of the RBF algorithm decreases with increasing FVC and decreases with increasing slope. It is suitable for data with low terrain slope (0~55°) and low FVC (0~220°), which is less affected by observation time; therefore, it is suitable for all-day data. The DBSCAN algorithm is suitable for data with moderate FVC (45~75%) at night, regardless of terrain slope. Unlike the DRAGANN algorithm, the DBSCAN algorithm is greatly affected by solar noise photons, but at night, its denoising accuracy is higher than that of the DRAGANN algorithm. The research results have certain reference significance for the subsequent processing and application of ICESat-2 data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.