Abstract
Aiming at the problems of low target detection accuracy and high leakage rate of the current traditional weld surface defect detection methods and existing detection models, an improved YOLOv7 pipeline weld surface defect detection model is proposed to improve detection results. In the improved model, a Le-HorBlock module is designed, and it is introduced into the back of fourth CBS module of the backbone network, which preserves the characteristics of high-order information by realizing second-order spatial interaction, thus enhancing the ability of the network to extract features in weld defect images. The coordinate attention (CoordAtt) block is introduced to enhance the representation ability of target features, suppress interference. The CIoU loss function in YOLOv7 network model is replaced by the SIoU, so as to optimize the loss function, reduce the freedom of the loss function, and accelerate convergence. And a new large-scale pipeline weld surface defect dataset containing 2000 images of pipeline welds with weld defects is used in the proposed model. In the experimental comparison, the improved YOLOv7 network model has greatly improved the missed detection rate compared with the original network. The experimental results show that the improved YOLOv7 network model mAP@80.5 can reach 78.6%, which is 15.9% higher than the original model, and the detection effect is better than the original network and other classical target detection networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.