Abstract

Background: The spindle top is an important component used to withstand the shaft workpiece on machine tools so that the spindle can meet high efficiency and high precision requirements. However, the selection principles under various load conditions are not stipulated in use. In addition, material selection, manufacturing, heat treatment technology, etc., are of practical significance for the production of high hardness, high wear resistance, and high precision spindle tops. Objectives: The spindle top type, material selection principles, heat treatment, cold working, and other manufacturing processes are given. Provide a reference for highperformance and top-notch design and manufacturing. Methods: The model of the spindle top will be created in UG software, then using ANSYS finite element analysis software to analyze stiffness of spindle top whose height-to-diameter ratios are 1:4 and 1:7 types in a variety of different load cases. The design and manufacturing process of the spindle top is analyzed and expounded from the selection and performance comparison of metal materials, heat treatment of different materials, cold manufacturing technology, and other aspects. Results: The deformation laws of different types of spindle tops are obtained. According to the deformation regular, find the selection principle of height to diameter ratio of spindle top. The defects that are easy to occur in the technology are obtained and the preventive and solution measures are put forward. Conclusion: According to the deformation regular, find the selection principle of height to diameter ratio of spindle top. The material selection, heat treatment technology, and other technical research on the spindle top provide the necessary basis for the production of the spindle top.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.