Abstract

The high-speed steering control of tracked vehicles has been studied thoroughly, but the high-speed steering stability boundary of tracked vehicles has rarely been investigated. The establishment of a dynamics model with a high computational accuracy is the premise of studying the high-speed steering stability boundary of tracked vehicles. In this work, the track forces of tracked vehicles during steering were determined based on a shear stress model, and the steering dynamics model of tracked vehicles was established. A zero-differential-steering tracked vehicle was used as the object of study. The calculation results of the steering kinematics model and dynamics model of tracked vehicles under different steering conditions were studied in detail on sandy road surface environment, as well as the change laws of the steering trajectory, steering radius, vehicle centroid velocity, and steering slip angle. The steering trajectories of tracked vehicles on five kinds of roads under the same steering conditions were determined by simulations. By setting the critical condition for unstable steering, the corresponding relationship between the maximum circumferential velocity difference of the sprocket Δ u max , the minimum steering radius R min , the maximum sideslip angle β max , and the theoretical centroid speed v t h was obtained when the vehicle turned on five kinds of roads, and it was used to determine the high-speed steering stability boundary of tracked vehicles. The simulation results can provide a reference for the design of tracked vehicle steering mechanisms and high-speed steering control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call