Abstract

To meet the growing demand for integrated monitoring of complex power grid equipment, it is necessary to improve the situational awareness model of power transformers. The model is expected to assist monitoring personnel in timely identifying transformers with deteriorating trends among massive and discrete monitoring information, and to make responses in advance. However, the current transformer state awareness technology generally has the problem of single data source and poor timeliness, and still requires monitoring personnel to make artificial analysis and prediction in combination with telemetry information, which cannot fully meet the requirements of power grid equipment monitoring. This paper is based on multi-source data fusion technology, through associating and mining transformer alarm information, equipment maintenance records and power transmission and transformation online monitoring data, to extract the dimension features of transformer operation situation assessment. By constructing a multi-layer perceptron model, a transformer state transition model based on the principle of Markov chain is established, which can predict possible defects 2 h in advance and achieve good results, and determine the transformer state early warning index, providing sufficient time for monitoring personnel to deploy transformer operation and maintenance work in advance. Finally, the effectiveness of the method proposed in this paper is proved by the case of transformer crisis state in a city substation, and the method proposed in this paper has important significance for transformer state early warning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.