Abstract
Solving systems of nonlinear equations is perhaps one of the most difficult problems in all of numerical computations, especially in a diverse range of engineering applications. The convergence and performance characteristics can be highly sensitive to the initial guess of the solution for most numerical methods such as Newton’s method. However, it is very difficult to select reasonable initial guess of the solution for most systems of nonlinear equations. Besides, the computational efficiency is not high enough. Aiming at these problems, an improved particle swarm optimization algorithm (imPSO) is proposed, which can overcome the problem of selecting reasonable initial guess of the solution and improve the computational efficiency. The convergence and performance characteristics of this method are demonstrated through some standard systems. The results show that the improved PSO for solving systems of nonlinear equations has reliable convergence probability, high convergence rate, and solution precision and is a successful approach in solving systems of nonlinear equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.