Abstract

Solitons have garnered significant attention across various fields, yet a contentious debate persists regarding the precise structure of solitons on indium chains. Currently, multiple forms of solitons in one-dimensional atomic chains have been reported. STM provides an effective means to study the precise atomic structure of solitons, particularly their dynamics and interactions. However, limited research has been conducted on soliton interactions and soliton-chain interactions, despite their profound impact on relative soliton motions and the overall physical properties of the system. In this work, we characterized the structures of the soliton dimer and trimer, observed the displacements induced by the soliton entity and statisticized the dynamic behaviors of soliton dimers over time evolution or temperature. To reveal the soliton mechanism, we further utilized STM to investigate the CDWs between two solitons when two monomers were encountered. Additionally, we achieved the manipulation of the monomer on the indium chain by the STM tip. Our work serves as an important approach to elucidate interactions in correlated electronic systems and advance the development of potential topological soliton computers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call