Abstract

This article proposes a CBAM-ASPP-SqueezeNet model based on the attention mechanism and atrous spatial pyramid pooling (CBAM-ASPP) to solve the problem of robot multi-target grasping detection. Firstly, the paper establishes and expends a multi-target grasping dataset, as well as introduces and uses transfer learning to conduct network pre-training on the single-target dataset and slightly modify the model parameters using the multi-target dataset. Secondly, the SqueezeNet model is optimized and improved using the attention mechanism and atrous spatial pyramid pooling module. The paper introduces the attention mechanism network to weight the transmitted feature map in the channel and spatial dimensions. It uses a variety of parallel operations of atrous convolution with different atrous rates to increase the size of the receptive field and preserve features from different ranges. Finally, the CBAM-ASPP-SqueezeNet algorithm is verified using the self-constructed, multi-target capture dataset. When the paper introduces transfer learning, the various indicators converge after training 20 epochs. In the physical grabbing experiment conducted by Kinova and SIASUN Arm, a network grabbing success rate of 93% was achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.