Abstract

Offshore wind energy is an important part of clean energy, and the adoption of wind energy to generate electricity will contribute to the implementation of the carbon peaking and carbon neutrality goals. The combination of the fractional frequency transmission system (FFTS) and the direct-drive wind turbine generator will be beneficial to the development of the offshore wind power industry. The use of fractional frequency in FFTS is beneficial to the transmission of electrical energy, but it will also lead to an increase in the volume and weight of the generator, which is unfavorable for wind power generation. Improving the torque density of the generator can effectively reduce the volume of the generators. The vernier permanent magnet machine (VPM) operates on the magnetic flux modulation principle and has the merits of high torque density. In the field of electric machines, the vernier machine based on the principle of magnetic flux modulation has been proved its feasibility to reduce the volume and weight. However, in the field of low-speed direct-drive machines for high-power fractional frequency power generation, there are still few related researches. Therefore, this paper studies the application of magnetic flux modulation in fractional frequency and high-power direct-drive wind turbine generators, mainly analyzes the influence of different pole ratios and different pole pairs on the generator, and draws some conclusions to provide reference for the design of wind turbine generators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.