Abstract

Slips, trips and falls are one of the most common causes of injuries and fatalities in the general community and industry. The control of such incidents involves a complex array of factors including the characteristics of each individual's footwear and gait dynamics, walking and working surfaces, and environmental conditions. Notwithstanding this complexity, slip resistance properties have been widely measured as a form of coefficient of friction (COF) index at the sliding interface between the shoes and floors. Since the COF measurements were commonly adopted to evaluate slip potentials, it has been found that there were controversies in the interpretation of COF measurement results. This study, therefore, was principally focused on broadening the knowledge base and developing new ideas on which improvements in the validity and reliability of slip resistance measurements might be made. To achieve this goal, crucial problems on the current concept of slip resistance measurement were extensively analysed by a tribological point of view where principle understanding of the shoe-floor friction and wear phenomena could be made. Based on this approach, new theoretical models were suggested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call