Abstract

This paper presents a novel wearable robotic hand exoskeleton named ReHand-II for post-stroke rehabilitation. To ensure the consistency of rotation between exoskeleton joints and index finger joints and to realize reasonable range of movement, the kinematics models of left index finger and the exoskeleton are established. And design variables,constraints and objective function are determined. The size synthesis optimization design is realized. Ultimately the size value of each component parameter is determined. The hand exoskeleton is developed according to the results of the optimization. Finally, ReHand-II shows better bio-imitability and Wearable adaptability by wear experiment results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call