Abstract

For the multi-objective control problem of tracking effect and vehicle stability in the path tracking process of six-wheel distributed unmanned vehicles, a control strategy based on hierarchical control (HC) theory is proposed. A hierarchical kinematic model is designed considering the structural advantages of independent steering and independent driving of the unmanned vehicle, and this model is applied to the path tracking strategy. The strategy is divided into two levels of control. The upper level of control is to use the upper-level kinematic model as the prediction model of model predictive control (MPC), and to convert the solution problem of future control increments into the optimal solution problem of quadratic programming by setting the optimal objective function and constraints. The lower level of control is to map the optimal control quantities obtained from the upper level control to the six-wheel speeds and the four-wheel turning angles through the lower-level kinematics, and to design the six-wheel torque distribution rules based on deterministic torque and stability-based slip rate control for executing the control requirements of the upper level controller to prevent the unmanned vehicle from generating sideslip and precisely generating transverse moment to ensure the stable driving of the unmanned vehicle. Experiments were conducted on the Trucksim/Simulink simulation platform for a variety of road conditions, and the results showed that hierarchical control improved the accuracy of tracking the desired path and the driving stability on complex road surfaces more than MPC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.