Abstract
In response to the challenges of path planning in complex scenarios, to overcome the influence of optimal path determination by the precision of grid map sizes, and to escape the uncertainty in solving by intelligent algorithms, this paper designs a method for obtaining an adjacency matrix based on node planning of shortest path diagrams with polygonal obstacles and then uses the Dijkstra algorithm to get the shortest path. For irregular curved obstacles, an edge straightening method is proposed. To enhance the applicability of the path, this paper introduces the constraint of minimum turning radius. It researches path smoothing under obstacle conditions based on arcs and straight lines, providing practical solutions for different scenarios. Considering the need to maintain a safe distance due to the size of the moving carrier and the deviation in trajectory tracking, this paper conducts an expansion analysis of obstacles. It obtains the trajectory on the arc after edge straight line fitting, followed by further smoothing treatment. The method proposed in this paper demonstrates excellent accuracy and robustness in path planning through simulation verification, proving its practicality and effectiveness in complex environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.