Abstract
Due to the lack of data quality in real production environment, the traditional line loss calculation method cannot be applied, thus through the investigation of various information systems’ operation in power supply enterprises, a short-term low-voltage distribution network line loss prediction algorithm based on Kmeans-LightGBM is proposed. Operating data quality evaluation system of low-voltage distribution network was set up based on Hadoop platform, the feature dimensions were expanded by feature engineering, then those with no multicollinearity and high correlation with the line loss were selected, data normalization was again performed, Kmeans clustering algorithm was used to cluster the area and then, LightGBM algorithm was used to predict the classes within the area of line loss. Finally, the line loss of the numerical inverse normalization was found and validated with Beijing Power Grid of a low-voltage distribution network. By comparison, the model’s prediction accuracy is found to be higher than BPNN, FOA-SVR and traditional LightGBM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.