Abstract
In recent years, accidents such as spontaneous combustion and explosion have frequently occurred in the field of electrochemical energy storage, and thermal runaway caused by short-circuit faults in lithium-ion (Li-ion) batteries is one of the main reasons. This study investigated the internal short circuit (ISC) fault diagnosis method for Li-ion (LiFePO4) batteries in energy storage devices. A short-circuit fault diagnosis method for battery module components based on voltage cosine similarity is proposed based on the characteristics extracted from the ISC fault battery. In this method, the voltage and current of the battery were used to derive a two-dimensional feature vector, and a gain multiple with excitation information was introduced to perform secondary processing on the eigenvectors and achieve effective separation of the fault-signal features. The experimental results show that the proposed method can achieve a second-level rapid diagnosis of short-circuit faults in batteries when the simulated ISC resistance is below 5 Ω, and the excellent fault-detection capabilities for modules with inconsistent states of charge and the performance of the proposed method under dynamic conditions are verified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.