Abstract

Ship meteorological navigation is based on hydrometeorological data of a certain time scale, considering the ship’s motion characteristics and its own characteristics. First, we provide the best route for the ship and then use real-time local weather information to correct the route during the ship’s navigation. It can also be expressed as follows: it is based on the hydrological and meteorological conditions of the ship during its voyage and the seakeeping characteristics of the ship itself, and the route planning method is used to select the best route for the ship. The best route is a balance between economy and safety, that is, based on ensuring the safety of ship navigation, the route that meets the shortest navigation time, the least fuel consumption, or the least navigation risk is obtained. Weather navigation includes the optimization of the initial route before sailing and the correction of the route after sailing. As there may be errors in hydrometeorological forecasts, especially in the accuracy and real-time performance of medium and long-term forecasts, the optimal initial route may not achieve the best results. Therefore, after the ship sails, it is necessary to adjust and correct the preferred initial route based on the meteorological information detected by the sensors or the continuously updated hydrometeorological forecast data to ensure the best effect of meteorological navigation. This paper proposes a weather route planning method based on the improved A-star algorithm. The convex shape of the concave obstacle and the expansion of the obstacle are carried out; according to the position of the target point relative to the starting point, the search direction of the A-star algorithm at each node is restricted, and an improved A-star algorithm is proposed. The simulation of global weather route planning shows that the improved A-star algorithm can not only find the optimal path but also effectively reduce the number of nodes that the algorithm needs to search during operation. Compared with the classic algorithm, the improved algorithm reduces the number of node searches by 29.25%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.