Abstract

Abstract In order to quickly obtain practical ship forms with good resistance performance, based on the linear wave-making resistance theory, the optimal design method of ship forms with minimum total resistance is discussed by using the non-linear programming (NLP) method. Taking the total resistance as the objective function (the Michell integral is used to calculate the wave-making resistance and the equivalent plate friction resistance formula is used to calculate the frictional resistance), the hull surface offset as the design variable and appropriate displacement as the basic constraints, and considering the additional constraints, the hull bow shape and the whole ship are optimised, and an improved hull form is obtained. The resistance of the ship before and after optimisation is calculated by the CFD method to further evaluate the resistance reduction effect and performance after optimisation. Finally, an example of optimisation calculation of an actual high-speed ship is given. The obvious resistance reduction results confirm the reliability of the optimisation design method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.