Abstract

At present, the ship detection of optical remote sensing images based on deep learning has made great progress. However, due to the different use scenarios and specific tasks, how to select an appropriate algorithm according to the characteristics of the target and the target priority, so that achieve the detection goal while consider the detection accuracy and speed, still requires relevant research. In this paper, ship detection methods for optical remote sensing images are studied based on deep learning. First, to meet the needs of ship detection research, according to the characteristics of target size and type, datasets of medium and large ships and small target ships are made, and model training and testing are conducted based on Faster R-CNN, YOLOv4, and SSD algorithms respectively. The actual detection performance of the three algorithms under different ship sizes is obtained. The results show that for medium and large targets, Faster R-CNN has the highest precision, the next is YOLOv4, and SSD is the lowest. The detection speed is that SSD is the fastest, the next is YOLOv4, Faster R-CNN is the slowest. For small target ship detection, YOLOv4 has the best detection accuracy and SSD has the fastest detection speed. Faster R-CNN is not as accurate and fast as the other two algorithms. In addition, for different type ships, the detection results of different algorithms also have some differences. In practical applications, different methods should be used to achieve detection by comprehensively considering such factors as target size, target priority, detection accuracy and speed requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call