Abstract

Based on the equivalent continuity method, the accuracy of the shear lag warping displacement functions for frame-tube structures was studied under the Hamiltonian mechanics. Different types of functions were selected to describe the shear lag warping displacement of the flange plate, and the shear deformation and longitudinal warping of the equivalent plate were considered. The total potential energy of the structure and the corresponding Lagrangian function under different displacement modes were obtained. Not with the traditional variational methods, the problem was studied under the Hamiltonian mechanics system. The Hamiltonian canonical equation for the frame-tube structure was derived and solved with the precise integration method, then the column axial force was calculated and the accuracy was analyzed. The verification results of the calculation examples show that, this method is simple and feasible to analyze the shear lag effects of the frame-tube structures. The choice of different warping displacement functions has little effect on the lateral displacement calculation results, but has great influence on the axial force solution, and the quadratic parabola can best reflect the actual warping displacement distribution of the flange. Comparison of the stress distributions in the equivalent flange under different types of loads indicate that, with the increase of the position of the external load resultant force, the negative shear-lag effect on the top gradually weakens to disappear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call