Abstract

Main engine power prediction is important for polar ships operating in brash ice channels, which is one of the most important concerns of shipowners. Self-propulsion simulation is an efficient method to predict the developed power. At present, such models as the discretized propeller model (DPM) and the body force model (BFM) are used for self-propulsion simulation. However, these models are often limited to open water. There is little research on self-propulsion calculations in ice-infested water. This paper presents the BFM to carry out self-propulsion simulations in a brash ice channel. Research on simulation strategy for open water performance based on the BFM is carried out. Ship–ice–water interactions are simulated using computational fluid dynamics-discrete element method (CFD-DEM) coupling method. Both loaded and ballast conditions are considered in the model-scale self-propulsion simulations. Numerical results based on the BFM are compared with the simulation results based on the DPM, as well as model test results. Ship–propeller–ice interactions and propeller suction effects are also compared with photographs taken at an ice tank test. The results show that the differences of the developed power based on the BFM for both loaded and ballast conditions are 8.94% and 15.25%, respectively. The prediction accuracies of the developed power based on the BFM for both loaded and ballast conditions are 1.56% and 7.01%, respectively; lower than those based on the DPM. However, the computation efficiency based on the BFM is 12 times higher than that based on the DPM. To conclude, the proposed BFM could be used as an effective means to calculate the developed power and to evaluate the trend of hull-line optimization at the development stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call