Abstract

In the robot soccer competition platform, the current confrontation decision-making system suffers from difficulties in optimization and adaptability. Therefore, we propose a new self-adaptive decision-making (SADM) strategy. SADM compensates for the restrictions of robot physical movement control by updating the task assignment and role assignment module using situation assessment techniques. It designs a self-adaptive role assignment model that assists the soccer robot in adapting to competition situations similar to how humans adapt in real time. Moreover, it also builds an accurate motion model for the robot in order to improve the competition ability of individual robot soccer. Experimental results show that SADM can adapt quickly and positively to new competition situations and has excellent performance in actual competition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.