Abstract

With the advantages of long-range flight and high payload capacity, large fixed-wing UAVs are often used in anti-terrorism missions, disaster surveillance, and emergency supply delivery. In the existing research, there is little research on the 3D model design of the V-tail fixed-wing UAV and 3D flight environment modeling. The study focuses on designing a comprehensive simulation environment using Gazebo and ROS, referencing existing large fixed-wing UAVs, to design a V-tail aircraft, incorporating realistic aircraft dynamics, aerodynamics, and flight controls. Additionally, we present a simulation environment modeling approach tailored for obstacle avoidance in no-fly zones, and have created a 3D flight environment in Gazebo, generating a large-scale terrain map based on the original grayscale heightmap. This terrain map is used to simulate potential mountainous terrain threats that a fixed-wing UAV might encounter during mission execution. We have also introduced wind disturbances and other specific no-fly zones. We integrated the V-tail fixed-wing aircraft model into the 3D flight environment in Gazebo and designed PID controllers to stabilize the aircraft’s flight attitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call