Abstract

Copper-containing sludge is a common by-product of industrial activities, particularly electroplating and metal processing. This type of sludge contains high concentrations of heavy metals such as copper, which can pose a potential threat to the environment. Therefore, its treatment and disposal require special attention. Due to its efficient mass and heat transfer characteristics, the suspended state technology has shown significant potential for application in a number of key processes, including the drying, decomposition, and reduction of copper-containing sludge. This paper presents an in-depth analysis of the current status of the application of the suspended state technology in the treatment of copper-containing sludge. Based on this analysis, a device for the treatment of copper-containing sludge in the suspended state was designed, through which the characteristics of copper-containing sludge in the oxidative decomposition and reduction phases are investigated. The research objects were gas concentration, temperature, contact state, and particle size time. Orthogonal experiments were initially employed to investigate the relationship between the influencing factors and the conversion rate of copper oxides. This was followed by a single-factor influence study, which led to the determination of the optimal process parameters for the decomposition experiments of the Cu-containing sludge in an oxidizing atmosphere. The 100 μm Cu-containing sludge was reacted with 10% O2 gas at a flow rate of 1 m/s for 3 min under the condition of 900 °C. The process parameters were then determined as follows: The research objects were gas concentration, temperature, contact state, and particle size time. Orthogonal experiments were employed to investigate the relationship between the influencing factors and the copper conversion rate. This was followed by a single-factor influence study, which determined the optimal process parameters for the copper-containing sludge reduction experiments. The 200 μm copper-containing sludge was reacted for 5 min at a flow rate of 7% carbon monoxide at a flow rate of 1.5 m/s under the condition of 800 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.