Abstract

To address the problem of difficult performance assessment of train control on-board system after recovery from failures, we have proposed a resilience assessment methodology that uses reliability as an indicator of system resilience. Since the system failures are time-dependent, we adopted the Discrete Time Bayesian Network method to obtain the system's reliability before and after failure. Subsequently, we used an exponential recovery model to quantify the system's performance curve during the recovery phase, and finally utilized the resilient triangle area method to quantify its resilience size. Analyzing the CTCS3-300T train control on-board system, we found that the resilience of the system with cold standby redundancy design and hot standby redundancy design were 89.44 % and 87.34 %, respectively, indicating a slight decrease in system performance after recovery from failures compared to pre-failure levels. At that time, it was necessary to adjust operational plans based on actual conditions to avoid greater impact on the railway network. This paper realizes performance resilience of train control on-board system after failure recovery, which can be applied to similar systems and provide theoretical references for realizing intelligent maintenance of the high-speed train.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.