Abstract

The key to decreasing reradiation interference (RRI) of power transmission lines on adjacent radio stations is to clarify the RRI resonance mechanism. Aiming at the defects of existing RRI resonance analysis methods, including frequency limitation and lack of physical explanation, a RRI resonance analysis method based on characteristic mode (CM) theory is proposed in this paper. Firstly, based on the generalized eigenvalue equation, a set of characteristic currents with orthogonal relationship and their eigenvalues for power transmission lines are solved, and combined with Poynting’s theorem, the CM radiation characteristics are analyzed. Secondly, under specific external excitation, CM-related parameters are obtained through modal decomposition. Finally, the total energy radiated by power transmission lines is decomposed into the superposition of energy radiated by each CM, and the mechanism of RRI resonance is clarified from the perspective of CM. The simulation results show that compared with the IEEE guide and the generalized resonance theory, the method in this paper is effective and independent of observation points, which can provide a theoretical support for further research on the RRI suppression measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.