Abstract
To improve the prediction of properties of engineering materials, a Relevance Vector Machine (RVM) regression algorithm based on Kernel Partial Least Squares (KPLS) is proposed. In the algorithm, firstly execute the feature extraction from the original samples using KPLS, and then use obtained feature to realize RVM regression. The simulation shows that the hybrid regression algorithm can effectively reduce the difficulty on RVM modeling and has a wide application in prediction of properties of engineering materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.