Abstract
Mobile Edge Computing (MEC) is a supplement to traditional cloud computing. Its characteristics are low latency and high reliability, and it will be widely used in the future. However, their dense deployment pattern raises a big concern on the system-wide energy consumption. Dynamic power management (DPM) method is an important method to solve energy consumption problems, it saves energy by shutting down servers in the EDC that are idle or have low utilization. In this paper, a DPM method based on reinforcement learning was proposed, it achieves the trade-off between EDC service performance and energy consumption by learning the global optimal dynamic timeout threshold power management strategy by trial and error. Experiments have shown that the proposed method saves no less than 6.35% energy consumption compared to the expert-based method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.