Abstract

CO2 is assumed to be one of the most potential refrigerant alternatives for electric vehicles for its excellent properties. However, the charge determination of CO2 in current studies remain controversial. In this study, a transcritical CO2 air-conditioning heat pump system was established and experimentally tested to analyze the optimal charge amount. Based on two conflicting methods of charge determining proposed by the preceding research, this paper substantiated the existing controversy and subsequently proposed a more comprehensive method. The effects of different refrigerant charge on the system characteristics were investigated. The influence of the compressor speed on the optimal refrigerant charge and system characteristics was also analyzed. It was found that the optimal charge plateau occurred from refrigerant of 500 g–580 g at the compressor speed of 3000 r·min−1. However, the optimal charge declined with the increment of compressor speed from 3000 r·min−1 to 4500 r·min−1. Among three models, Hughmark's model was proved to be the most appropriate for the theoretical calculation of optimal charge within an error of 6.09%. Further study illustrates that refrigerant mass in high-pressure pipe and intermediate heat exchanger/accumulator (IHX/A) accounted for the main proportion about 52.6%–55.14%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call