Abstract

Aiming at solving the problem that it is difficult to recognize the quiet period of acoustic emission in rocks, four machine learning algorithms were adopted to develop and improve the recognition method of the quiet period of acoustic emission. In the process of establishing the model, the time domain data of acoustic emission were standardized and processed by box diagram method, so as to clean the abnormal data and reduce the dimension, and the frequency domain data were denoised by wavelet four-layer transform and wavelet packet three-layer energy decomposition, and a group of 8 wavelet packet energy parameters were established as frequency domain characteristic parameters. Based on AE time domain data, frequency domain data, and composite data (time-frequency domain data sets), the grid search traversal parameter technique was used to obtain the optimal parameters of four machine learning models. The accuracy, precision, recall, and F 1 score were used to verify and evaluate the recognition performance of the models. The study results show that the recognition effects of the models are good, the model accuracy of the frequency domain data set is the lowest, and the model accuracy of the composite data set is the highest, with an accuracy of more than 90%. The kernel support vector machine model has the best performance, and its average precision is 0.87. The random forest (RF) model is the best model for recognizing quiet period of acoustic emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.