Abstract

There are two main contributions in this paper: Firstly, by analyzing the frequency domain features and Mel domain features, we can identify footstep events and non-footstep events. Secondly, we compared the two footstep sound signals of the same person in frequency domain under different experimental conditions, finding that almost all of their peak frequencies and trough frequencies in the main frequency band are respectively corresponding one-to-one. However for the two different people, even under the same experimental conditions, it is difficult to have the same peak frequencies and trough frequencies in the main frequency band of their footstep sound signals. Therefore, this feature of footstep sound signals can be used to identify different people.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.