Abstract

Sudden debris flows in underground mines are characterized by strong burstiness, great destructiveness, and difficult monitoring. Traditional single monitoring methods can only roughly judge the probability of underground debris flow occurrences through one-sided potential phenomena, making it difficult to accurately predict sudden underground debris flows. Therefore, effective monitoring methods can prevent or reduce waste and damage to mineral resources caused by mine debris flow disasters. This study is based on the theoretical foundations of rainfall automatic identification program, unsteady flow theory, and wavelet threshold denoising theory. It preprocesses key data such as rainfall, groundwater, and surface displacement with the aim of reducing criterion errors and improving the accuracy of determination. By utilizing the underground debris flow warning determination program, warning determination algorithm, and information management system hosted on the monitoring and warning platform, a comprehensive underground debris flow warning system is integrated. This system incorporates determining parameters such as rainfall, water inflow, groundwater level, surface subsidence, pore water pressure, surrounding rock stress, microseismic phenomena, and underground video recognition, with the innovative approach of “weather-surface-underground” multi-directional monitoring. The system was successfully installed and applied in the Pulang Copper Mine in Yunnan Province, demonstrating good application effectiveness. The results indicate that compared to traditional single monitoring methods, the multi-directional monitoring and warning system for underground debris flows has advantages such as low fault tolerance and high accuracy, making it more suitable for ensuring safe mining in mining areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call