Abstract

This study investigates the radiation damage and radiation reinforcement of the control and sensing systems of nuclear robots. Radiation experiments were conducted on key electronic devices to study their radiation resistance, and a shielding structure for radiation reinforcement was designed to meet the radiation resistance performance requirements of the system. The results show that at doses exceeding 1300 Gy, Hall sensors, pressure transducers, and temperature transducers exhibit radiation damage. At doses exceeding 170 Gy, transformers and controllers also show radiation damage. Lithium batteries remain largely unaffected, but packs experience voltage decline. When using Pb and W as shielding materials for Super MC simulation, it was found that at a thickness of 15 mm, the shielding efficiency of the controller and transformer under Pb shielding increased by approximately 84.99% and 52.00%, respectively, compared to 92.23% and 74.47% under W, which had the best shielding effect benefits. By adopting radiation-resistant shielding reinforcement, we can effectively improve the radiation resistance of the controller and transformer. This is crucial for ensuring the reliable operation of nuclear robots in high-radiation environments and providing important data and theoretical support for the development of related technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call