Abstract

In order to improve missile-borne radar detection performance in modern electronic warfare, a radar waveform design method based on Nash equilibrium is proposed. Firstly, the radar and jammer game signal models are established in electronic warfare. Based on maximum Signal-to-Interference-plus-Noise Ratio (SINR), waveform strategies of radar and jammer are designed respectively. Secondly, the existence of Nash equilibrium solution is demonstrated by mathematical derivation and verified in experimental simulation. A multiple iterative water-filling method which repeatedly eliminates strict disadvantages is designed to achieve Nash equilibrium. The maxmin scheme of disequilibrium game is deduced by two-step water-filling method. Finally, the radar detection performance of optimization strategies is tested by simulation experiments. Simulation results reveal that the radar waveform design based on Nash equilibrium is beneficial to improve the radar detection performance under game conditions. Compared with no-game and maxmin strategies, the radar detection probability of Nash equilibrium strategy can be increased by 12.02% and 3.82%, respectively. It is proved that the Nash equilibrium strategy of this paper is closer to the Pareto optimality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call