Abstract

Fe-Ni alloys were fabricated on steel substrates by means of pulse electrodeposition in sulfate solutions. The layers were electrodeposited using different peak current densities, duty cycles and frequencies. Fe contents, microhardnesses and crystalline phases were examined systematically. The Fe content in the deposit decreased and the microhardness increased with increasing duty cycle and peak current density. The pulse frequency had little effect on Fe content but led to a slight decrease in microhardness. X-ray diffraction patterns show that the crystalline phases vary with changes in peak current density and duty cycle but are barely influenced by frequency. When the peak current density or duty cycle is relatively low, crystalline Fe-Ni alloy and pure Fe phases coexist; the pure Fe phases disappear as the peak current density or duty cycle increases. At still larger peak current densities or duty cycles, crystalline Fe-Ni alloy and pure Ni phases coexist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.