Abstract
Aiming at the s-wave velocity prediction problem, based on the analysis of the advantages and disadvantages of the empirical formula method and the rock physics modeling method, combined with the s-wave velocity prediction principle, the deep learning method is introduced, and a deep learning-based logging s-wave velocity prediction method is proposed. This method uses a deep neural network algorithm to establish a nonlinear mapping relationship between reservoir parameters (acoustic time difference, density, neutron porosity, shale content, porosity) and s-wave velocity, and then applies it to the s-wave velocity prediction at the well point. Starting from the relationship between p-wave and s-wave velocity, the study explained the feasibility of applying deep learning technology to s-wave prediction and the principle of sample selection, and finally established a reliable s-wave prediction model. The model was applied to s-wave velocity prediction in different research areas, and the results show that the s-wave velocity prediction technology based on deep learning can effectively improve the accuracy and efficiency of s-wave velocity prediction, and has the characteristics of a wide range of applications. It can provide reliable s-wave data for pre-stack AVO analysis and pre-stack inversion, so it has high practical application value and certain promotion significance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.