Abstract

Fuel cell vehicles powered by proton, exchange membrane fuel cell systems. They have gained widespread attention for their unique environmental advantages. Pure fuel cell system usually uses hybrid power system because of its soft output and slow dynamic response. The study takes the automotive fuel cell power system as the research object, designs a power control strategy based on DC voltage sag control and fuzzy logic and proves its effectiveness by simulation for different working conditions. The simulation results show that under CYC_UDDS conditions, the bus voltage curve of the power system changes smoothly and the voltage fluctuation range is 580~612V, which satisfies the 5% voltage accuracy. And the SOC of the battery is relatively smooth in the whole cycle condition, maintaining between 0.685 and 0.715. Its slightly increasing, which is in the line with the design goal of maintaining SOC of the battery near 0.7. The scheme proposed in the study helps to solve the problems of difficult design implementation, large number of calculations, poor real-time performance and complex structure of the current existing control strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call