Abstract

Cylindrical components are parts with curved surfaces, and their high-precision defect testing is of great significance to industrial production. This paper proposes a noncontact internal defect imaging method for cylindrical components, and an automatic photoacoustic testing platform is built. A synthetic aperture focusing technology in the polar coordinate system based on laser ultrasonic (LU-pSAFT) is established, and the relationship between the imaging quality and position of discrete points is analyzed. In order to verify the validity of this method, small holes of Φ0.5 mm in the aluminum alloy rod are tested. During the imaging process, since a variety of waveforms can be excited by the pulsed laser synchronously, the masked longitudinal waves reflected by small holes need to be filtered and windowed to achieve high-quality imaging. In addition, the influence of ultrasonic beam angle and signal array spacing on imaging quality is analyzed. The results show that the method can accurately present the outline of the small hole, the circumferential resolution of the small hole is less than 1° and the dimensional accuracy and position error are less than 0.1 mm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call