Abstract

Visible light communication (VLC) based on light emitting diodes (LEDs) or laser diodes (LDs) has attracted considerable interest in recent years. Due to the advantages of laser diodes based on nitrides, such as small size, high brightness, visible light and high bandwidth, it can be applied to illumination and communication at the same time. In this paper, blue laser and yellow phosphors were employed to synthesize white light. And “efficiency droop” is not observed in the LIV characteristics of LD-based white light either. The bandwidth measurement system with high reliability was set up. The bandwidth of blue laser diode and phosphor-conversion laser-based white light was measured. The maximum of optical −3 dB bandwidth of blue LD is around 1.8 GHz at 80 mA and maximum of optical −3 dB bandwidth of white light is about 1.3 GHz at 60 mA. The color parameters of the synthetic white light were characterized through integrating sphere. Moreover the trends of test data with injection current were analyzed in detail. The problem of thermal degradation of yellow phosphors has been improved by a special design that can keep a certain distance between the blue laser diode and phosphors. The experiment results verified that laser diodes based on nitrides have promising applications in lighting and communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call