Abstract
The traditional sensorless control system of permanent magnet synchronous motor (PMSM) has the problems of low estimation accuracy and poor anti-interference ability. Moreover, the position estimation performance is subjected to position harmonic ripples caused by inverter nonlinearities and flux spatial harmonics. To optimize the dynamic performance of the PMSM sensorless control system, this paper proposes a sensorless control scheme that combines integral backstepping control with enhanced linear extended state observer (ELESO). The ELESO consists of two linear extended state observers (LESOs), which estimate the internal and external disturbances of the system, to improve the estimation accuracy of rotor position. Then, the integral backstepping controller processes the estimated rotor position and speed information to obtain d and q-axis voltages. The sensorless control scheme is implemented in the Matlab/Simulink and verified by experiments. The simulation and experiment show that the scheme can effectively suppress load interference and improve control accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.