Abstract

The vertical integration of ‘Generation-Grid-Load-Storage’ in microgrids for port areas is a prevailing trend. To comprehensively and accurately assess the operational efficiency of microgrids and develop an effective means for promoting the sustainable and scalable development of microgrids in port areas, an applicable evaluation index system and comprehensive evaluation method are essential. Addressing the issues of subjectivity in quantitative evaluation decision-making for different configuration and allocation schemes in port areas and the lack of a comprehensive evaluation system for microgrids in port areas, this study aims to scientifically and reasonably evaluate and select the most optimal configuration and energy dispatching schemes for microgrids in port areas. In this paper, the performance indicators of microgrids in port areas are hierarchically structured and classified into five dimensions: economic, energy efficiency, environmental, system reliability, and safety. A comprehensive evaluation index system for microgrid systems in port areas is constructed. Furthermore, an evaluation model for microgrid operational efficiency based on improved CRITIC-TOPSIS is proposed. The coefficient of variation is introduced to measure the relative strength and relative variation of indicators among dimensions, reducing the impact of correlation between indicators and improving the accuracy and objectivity of the evaluation results. Then, the TOPSIS method is used to calculate the comprehensive evaluation values and rank the optimal microgrid schemes in port areas. Finally, the feasibility of the evaluation index system and evaluation method for the operational efficiency of microgrids in port areas is verified through case analysis. The results indicate that the evaluation method based on improved CRITIC-TOPSIS can objectively and quantitatively evaluate the operational efficiency of microgrids in different port areas. The proposed method reasonably avoids the strong subjectivity in weight calculation by traditional expert judgment during the planning phase of microgrids in port areas, providing a new and scientifically effective engineering evaluation and analysis method for the evaluation of microgrid operational efficiency in port areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call