Abstract

In view of the fact that the global planning algorithm cannot avoid unknown dynamic and static obstacles and the local planning algorithm easily falls into local optimization in large-scale environments, an improved path planning algorithm based on the integration of A* and DWA is proposed and applied to driverless ferry vehicles. Aiming at the traditional A* algorithm, the vector angle cosine value is introduced to improve the heuristic function to enhance the search direction; the search neighborhood is expanded and optimized to improve the search efficiency; aiming at the problem that there are many turning points in the A* algorithm, a cubic quasi-uniform B-spline curve is used to smooth the path. At the same time, fuzzy control theory is introduced to improve the traditional DWA so that the weight coefficient of the evaluation function can be dynamically adjusted in different environments, effectively avoiding the problem of a local optimal solution. Through the fusion of the improved DWA and the improved A* algorithm, the key nodes in global planning are used as sub-target punctuation to guide the DWA for local planning, so as to ensure that the ferry vehicle avoids obstacles in real time. Simulation results show that the fusion algorithm can avoid unknown dynamic and static obstacles efficiently and in real time on the basis of obtaining the global optimal path. In different environment maps, the effectiveness and adaptability of the fusion algorithm are verified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call