Abstract

A fusion pathfinding algorithm based on the optimized A-star algorithm, the artificial potential field method and the least squares method is proposed to meet the performance requirements of path smoothing, response speed and computation time for the path planning of home cleaning robots. The fusion algorithm improves the operation rules of the traditional A-star algorithm, enabling global path planning to be completed quickly. At the same time, the operating rules of the artificial potential field method are changed according to the path points found by the optimal A-star algorithm, thus greatly avoiding the dilemma of being trapped in local optima. Finally, the least squares method is applied to fit the complete path to obtain a smooth path trajectory. Experiments show that the fusion algorithm significantly improves pathfinding efficiency and produces smoother and more continuous paths. Through simulation comparison experiments, the optimized A-star algorithm reduced path-planning time by 60% compared to the traditional A-star algorithm and 65.2% compared to the bidirectional A-star algorithm path-planning time. The fusion algorithm reduced the path-planning time by 65.2% compared to the ant colony algorithm and 83.64% compared to the RRT algorithm path-planning time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call