Abstract

In this paper, the nonlinear U model with time-varying coefficients is investigated and the transformation of the nonlinear model is accomplished by the Newton iterative algorithm. Based on the nonlinear U model, a control algorithm with cerebellar model articulation controller and proportional derivative (PD) in parallel is proposed. The algorithm learns online through a neural network while optimizing the output of the PD, which ultimately enables the actual output of the system to track up to the desired output. Considering that the nonlinear object has the characteristic of rapid change with time, the article improves the PD algorithm to nonlinear PD control algorithm to complete the design of the system. The algorithm automatically adjusts the weights according to the error magnitude to complete the controller parameter adjustment, thus reducing the error of the system. The simulation results show that the nonlinear PD algorithm is better than the PD algorithm, meanwhile, the tracking speed and control precision of the system are improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.